Notes on the back story of this letter:

I sent this 9-page letter to **John McGechie** on Sept, 27 (1980) to thank him and the members of the *PPC Melbourne Chapter* for their extremely warm welcome and enthusiastic reception of my materials, which I began to submit to them as well after growing fed up with *Richard Nelson*'s continuous disregard and complete silence. In stark contrast, the Australian people were warm and appreciative and, most importantly, they *did* communicate with me very extensively and on a regular basis, while *Mr. Nelson* never *ever* sent a single word on *anything*, be they my submittals, questions, comments, proposals, news, requests, whatever. *Melbourne's PPC* was *heaven* in comparison.

The letter continues with comments re the *PPC Jul/Aug* issue's materials (which included some *Mr. Nelson* grabbed directly from *Melbourne's Technical Notes*) and on his alleged disapproval of *TN* publishing materials previously submitted to him (even if he chose *not* to publish them, talk about *dog in the manger* !), as well as comments on the materials selected (or not) for the *PPC ROM*. Additionally, I also comment on the article I sent to *PPC* which was censored because of **PRIVATE**, and possible "culprit party" for that censorship.

After some comments on two *Solutions Books* written by me and my friend *Fernando del Rey* which *HP Spain* intended to publish locally, I include and detail my own attempt to improve on John's *b2* routine (using my approach discussed in a previous letter) which indeed did result in working code but John's original approach was still better.

Finally, I include the following materials: (1) **RP**, an **HP-41C** program to automatically find *all roots of a polynomial equation* of arbitrary degree (limited only by available memory) with real and/or complex coefficients, in a completely global fashion (i.e., no initial approximations required) and callable as a subroutine from other programs (I had previously sent **RP** to **Mr**. *Nelson* for publication in **PPC CJ** but just in case he would silently ignore it as usual, I didn't want to have its publication indefinitely delayed); (2) an **HP-41C** fast implementation of an *N-level RPN stack* including all the usual functions, with N limited only by available memory, and (3) an autolearning **HP-41C** game, "*Even Wins*", which plays better and better the more you play against it.

Last, I mention my programs to be submitted next to the *Melbourne Chapter*, including least-squares *N-variable linear regression* or *Nth-degree polynomial regression*, *NxN-matrix 2-level RPN stack* with the usual matrix operations, plus *Checkers* and *Chess 5x5* coming soon.

Valentin Albillo, 14-02-2022

John McGechie Philosophy Department Monash University Clayton, Victoria AUSTRALIA, 3168

Valentin Albillo Padre Rubio, 61- 2º C Madrid 29 SPAIN

Dear John:

First, notice I follow your suggestions: a small envelope, and the letter is entirely written as if it were to be submitted to PPC: one side printing, 14 cm wide (the edges have been chopped off, to reduce weight). Your letter dated 17th arrived just today: I was beginning to believe you had forgotten me, you see. Glad to hear all my letters arrived: by the way, the letter containing PPC Technical Notes did also arrived in an envelope opened along one edge, it should be a new fashion ! Very happy to hear my material is of any use tosome of you. I whish to thank you, each and everyone of you, for accepting me as a member of your Chapter, I'll try to do my best at this distance (over 20,000 Km!) to deserve such an honor. I specially which to thank Ernie Gibbs and Richard Kuhoutek (right spelling?) for typing some of my programs: from now on, I will either type the programs in this format 14 cm wide, or send the best quality photocopies I could afford, so as to avoid any subsequent retyping.

Sept, 27

Some comments about Jul/Aug issue of PPC: I notice the pages full of reports of the Melbourne Chapter, it is wonderful to see those all good news being shared with the whole membership. In fact, Richard took some material from PPC TN, the AN routine for example. I don't see why you suspect Richard does not approve your publishing material previously sent to him, he seems to publish even things not submitted to him ! On the other hand, Richard should be happy of having so much material contributed: you should know by now that every number of PPC journal reflects the knowledges and discoveries of several months ago, so quite a lot of published material is obsolete by the time of its publication. PRC TN seems to have avoided this problem, publishing the hottest news, so I don't see why Richard. would have nothing to object: for instance, I sent him the Othello program several months in advance, about two months before I sent it to you, however, it seems that it will be published in PPC TN and not in PPC CJ; if Richard has the material, but does not make use of it, why would he object others publishing it ?

Another comment: The column ROM PROGRESS in V7 N6 P32 (jul/Aug iss) features a proposal for the contents of the Synthetic Programming Group for the Custom ROM. It includes 3 of my routines: the Byte Counter, Display Test, and Flag reset. I feel two others should be included as well, namely the Clear Assignments (it is shorter than the versions published, although I have yet to test overall performance of those other versions), and the sigma finder, (also curtain finder, etc), but this is irrelevant. What is certainly inadmissible is that your routines AN & little b2 were not included in the list !!!

Now, I feel that you must do something ! Those routines are most useful. In fact, after having your AN, I have never used DECODE: your routine is so much shorter and faster, that it should be preferred. I don't object to DECODE being included in the ROM, it has to, but your routine AN is a must. The same is valid for your b2: it is far more convenient than the B2 routine from Wickes included in that list. Your b2 is faster (B2 uses DECODE as subroutine) and more convenient to use, because it does not require the decimal address of the $\frac{1}{2}$ register in which the NNN is to be stored, but rather a simple program pointer address, easily obtained via RCL b. I've tried to program a little b2 in the other way I told you in a previous letter, but to no purpose, yours is better. See my attempt later.

Resuming, please, do something ! Your routines are so useful that the ROM will be enhanced if they are included.I'll write to PPC asking for them. Also, another miss is the B3 routi ne published in (I think) the May issue of PPC, or a similar one. It seems obvious that a routine to set or clear any flag is needed, and I can't see why the B3 is not in the list.

Another comment: my "Universal Byte jumper" was finally published in the Jul/Aug issue, and the point (5) was deleted, as expected (the method of breaking PRIVATE using just STO b, RCL b). However, Richard forgot (?) to also suppress the header, in which I mentioned the possibility of breaking PRIVATE that way, and several PPC members got my address (I can't figure out how!) and wrote me asking for the method.Most noticeably, Mr. A.C. Collinson, who works for HP in the United Kingdom. I was told by some HP people that Richard and HP made an agreement in the sense that PPC would not publish any information concerning PRIVATE. I really don't believe it, but, do you think that it is possible ? Anyway, I think the easiest method to break PRIVATE is using the Wickes' Byte jumper, though I've not tried it yet. Are you going to publish methods to break PRIVATE in PPC TN ?

Concerning the books "HP-34C Advanced Math" & "HP-41c Advanced Math", I'll send you a copy as soon as I can get them. I have a copy of each, but it is easy to get HP to give me another two. They are the same format as the rest of the Solution Books for the 41c. Remember they are written in Spanish. The book for the 41c will include bar codes (my copy does not include bar codes, but it is a pre-production copy: future copies will include bar codes, possibly printed in Spain ! I'm working in a program for the HP-85 to print barcodes via a peripheral plotter, and it works). Can you suggest a way to send them safely, so they will arrive to your hands in a good condition ? Large envelope ? flat box ? Any ideas ?

Here is my attempt to improve your b2:

LBL"b2"	X()Y	-	LBL 01	INT
CLA	XEQ 01	"天图」~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	STO M	HMS
х() м	16	RCL c	R down	16
" H 123456"	MOD	R u p	"トーーーーエ	¥
x() N	LASTX	ASTO c	RCL M	RCL M
" ⊢ 7"	x 2	STO IND Z	FRC	+
ø	¥	х()Y	10	END
X() N	+	STO c	X	
XEQ 01	192	RTN	X() M	

it works the same as yours, NNN in Y and Rb in X, but it is 90 bytes, 44 lines, while yours is 36 lines, 89 bytes. Besides, yours is faster. So I was wrong, and your method is better. First text is F501690C00BF. The 2nd is F67F0000000001.

I have been working in several programs. I've put aside synthetics (momentarily, don't fear!), and set the task of writing some programs. Of course, those programs could use synthetic functions, but, as they are written to be published later by HP, synthetics are out of the question. Here included are several programs:

1) Roots of polynomial equations : this program solves an equation of any degree, with real and/or complex coefficients. The program finds all its n roots, real or complex. No initial approximations are required: only input are the coefficients and the degree. Output are all n roots. The program can solve the equations of degrees 1 thru 132. It fits and runs in a basic machine (up to 5th degree without modules, up to 36th degree using just one module). The roots are also stored, and are output once all of them have been computed. As they are stored, it may be - used as a subroutine, simple delete the input-output part. An - example of a program requiring root finding of polynomials is a filter design program. This one is optmized to run as fast as - possible and not take more than 300 bytes (298, in fact). Hope you (and other members as well) will like it. It is typed 14 cm wide, so it must be easy to use without retyping. Notice the - LBL 03 subroutine: it performs the multiplication of two complex numbers using just the stack, and no P-R or R-P conversion, to save time; it should be useful in any program requiring multi - plication of complex numbers.

- 2) <u>n-th level RPN stack</u>: this program simulates a RPN stack of n registers, where n is chosen by the user. It includes CL, +,-, ±,/,ENTER,LASIX,PI,RCL,Rdown,X()Y,etc. (of course, STO is the normal STO). The stack may be of any number of levels, not just the 4-level stack built-in. It should be good for all those people who want 5-level stack, etc. This one is the answer to their problems, isn'it ?
- 3) Even wins, a game: it is a much optimized version of a game I saw written in BASIC. It seemed good, so I took the work of translating it to RPN. See the rules in the enclosed listing. The game is most remarkable, because the computer (41c) starts knowing just the rules of the game, but it learns as it plays, and soon plays better than the user (similar to hexapawn programs published here and there, only this game is much more complex, and its strategy is not at all trivial). After 20 games in a row, the program is very hard to defeat. The better you play, the faster it learns to play well. The learning strategy is simple, but quite good.

This would suffice by now: it it already too much for such a - small envelope ! It almost does not fit !

By the way, here are some programs I am working on just now:

<u>N-variables least-squares linear regression</u>: given any number of data points, finds the coefficients of the least-squares linear regression of n variables. Can also find the n-th degree least-squares polynomial to fit the data. This is, not just linear regression, or cuadratic regression, but n-th degree regres sion! Any member interested in Statistics will love this one. The program is already written, I'll send it in my next letter.

<u>NxN matrix operations</u>: simulates a 2-level RPN stack of NxN matrices, so allowing chaining of operations. Includes input,output,+,-, \mathbf{x} , inverse, etc. Allows easy handling of NxN matrices. Such things as $3M^3-2M^2+8I$ where M is a given 10x10 (say) matrix or P^{-1} .Q.P, where P,Q are $\delta x \delta$ matrices, are trivial. Almost finished, only a little debugging is still needed.

I'm also writing a program that plays checkers against the user, and still another that plays chess in a 5x5 board (Each side has the king, a queen, a rook, a bishop, a knight and 5 pawns) and includes all standard chess rules, except castling and capture "en passant". I already have the complete flowchart, and am in the phase of actually writing 41c code for it.

That's all. Please, sent me information about the "42-c" and the TI machine, and, if possible, a brochure of the Sharp handheld computer. Waiting for your news:

Yours

This program finds all <u>n</u> roots, real and/or complex, of any given equation of degree n:

 $P(z) = c_n z^n + c_{n-1} z^{n-1} + \cdots + c_2 z^2 + c_1 z + c_0 = 0$

where the coefficients, c_i are of the general form: $c_i = a_i + b_i i$ this is, they are complex coefficients. Of course, the particu lar case of real coefficients is included, simply all b_i are 0.

The program finds automatically all n roots of the equation. The roots are of the general form: $z_i = u_i + v_i i$ if the root is real, v = 0.

No initial approximations are needed, simply enter the coefficients and go have a cup of coffee. All roots will be computed to 10-digit accuracy, and stored as well. The roots are displayed after you press R/S, so you'll have all needed time to write them down.

CHARACTERISTICS

The program is 177 lines, 298 bytes long. It requires a minimum size 2n+11 to solve an equation of degree n. If you have no modules, you can solve up to a 4th degree equa tion (if you use the .END., and supress the alpha label, up to 5th degree is posible). Having modules, the following applies:

> 1 module - up to 36th degree n modules - up to (32n+4) deg.

so, the range is $1(=n(=132 \cdot Roots are stored, so this program may be used as a subroutine of another main program requiring the zeros of a polynomial (filters, perhaps) by simply supressing the input-output routines. See listing for details.$

The execution time is quite fast, but for lar ge n, it should be long. Each time flag 0 is set (watch indicator), a root has been found, and the search for another root beguins. The program first calculates the n-th root, then the -(n-1)th one, up to the 1st one. If you want to review which root is being computed at a given moment, simply R/S, VIEW 00, will display the number of the root being calculated. Then R/S to resume the computation.

The program uses Newton's method to find each root, starting from a program's selected initial approximation:

 $z_{n+1} = z_n - P(z_n)/P'(z_n)$, where the subscripts denote the next approximation,

 $P(z) = c_{n}z^{n} + c_{n-1}z^{n-1} + \dots + c_{1}z + c_{0}$ $P'(z) = nc_{n}z^{n-1} + (n-1)c_{n-1}z^{n-2} + \dots + 2c_{2}z + c_{1}z^{n-2}$

Once a root has been found, deflation is used (by means of Horner's scheme) to remove the root from the equation, so it is reduced by one degree, and the search for another root begins. As the degree decreases by one (or two if coefficients are real and the root is complex) every time a root has been found, the following root takes usually less time to compute.

Every iteration includes about n+2 complex multiplications and 1 complex division (not to mention +,-). LBL 03 performs the multiplication of two complex numbers c_{1},c_{2} , leaving the result in X,Y, and uses only the stack. It does not use R-P or P-R, so as to be as fast as possible.

<u>HOW TO USE</u>: the equation is $c_n z^n + c_{n-1} z^{n-1} + \cdots + c_1 z + c_0 = 0$ where $c_k = a_k + b_k i$

-set SIZE 2n+11 minimum, where n is the degree, of course. -XEQ "RP" \rightarrow N?, key in the degree of the equation n R/S \rightarrow An=?, key in An (real part of c_n) a_n R/S \rightarrow Bn=?, key in Bn (imag.part of c_n)

 $b_n R/S \rightarrow An-1=?$, keep on introducing all coefficients... \Rightarrow BØ=?, enter the last coefficient ... $b_0 R/S \rightarrow$ the computation begins , every time a root is found, you'll see the O indicator turn on. After a while, all roots are computed and stored, the output takes place: (beep) \rightarrow ROOT 1 \rightarrow U=real part of z_1 R/S \rightarrow V=imag part of z₁ R/S \rightarrow ROOT 2 \rightarrow U=real part of z_2 R/S > V=imag part of z2 → ROOT n → U=real part of zn \rightarrow V=imag part of z_n R/S R/S > 0.00n-1 -for another equation, go back to the beginning. -remember, $z_k = u_k + v_k$ i . If the root is real, v_k is either 0 or very close to 0, say 2E-9 or so. if your equation has only real coefficients, enter all b; as 0 MARNINGS : - convergence is not guaranteed. It may be possible for the program to never find a root. However, I have been unable to find such a case: all tested cases up to date were solved successfully. Convergence is quadratic: once a good approximation is found, the number of exact digits doubles on every iteration. -multiple roots will take much longer to compute, and the accuracy will get worse. For instance: $x^{2} + 4x + 4 = 0$ gives (2 min.26 sec), $z_{1} = -2.0000005 - 0.0000004i$ (double root, $z_1=z_2=-2$) $z_2 = -1.9999995 + 0.000004i$ $x^3+3x^2+3x+1=0$ (7 min.48 sec), $z_1=-1.0004717-3.9996900E-8$ i $z_2 = -0.9997642 + 0.0004079$ i $(triple root, z_1=z_2=z_3=-1)$ $z_3 = -0.9997641 - 0.0004079$ i EXAMPLES : 1) Find all roots of the following equation: $(2+8i)z^{6}+(3+0i)z^{5}+(-1+2i)z^{4}+(0+2i)z^{3}+(-3-3i)z^{2}+(1+2i)z+(-2+3i)=0$ →the degree is 6, so SIZE 23 \Rightarrow XEQ "RP" \Rightarrow N?, 6 R/S \Rightarrow A6=?, 2 R/S \Rightarrow B6=?, 8 R/S \Rightarrow A5=? 3 R/S \rightarrow B5=?, 0 R/S \rightarrow A4=?, -1 R/S \rightarrow B4=?, 2 R/S \rightarrow A3=? 0 R/S \rightarrow B3=?, 2 R/S \rightarrow A2=?, -3 R/S \rightarrow B2=?, -3 R/S \rightarrow A1=? 1 R/S \rightarrow B1=?, 2 R/S \rightarrow A\$\vert A\$\vert =?, -2 R/S \rightarrow B\$\vert =?, 3 R/S \rightarrow computation takes place. After 8 min. you get: \Rightarrow ROOT 1 \Rightarrow U=-0.9724260 , R/S \Rightarrow V= 0.3032192 , R/S \Rightarrow → ROOF 2 → U=-0.0715576 , R/S → V= 1.1235559 , R/S → \rightarrow ROOT 3 \rightarrow U= 0.0323977 , R/S \rightarrow V=-0.8883400 , R/S \rightarrow \Rightarrow ROOT 4 \Rightarrow U= 0.5688927 , R/S \Rightarrow V= 0.5464170 , R/S \Rightarrow → ROOT 5 → U= 0.8266036 , R/S → V=-0.3541840 , R/S → → ROOT 6 → U=-0.4721457 , R/S → V=-0.3777269 , R/S → 0.0050000 2) Solve $5x^6 - 4x^5 - 3x^4 + 8x^3 + 8x^2 - 2x + 7 = 0$ Adegree 6, SIZE 23, as before $\rightarrow XEQ$ "RP" $\rightarrow N$?, 6 R/S $\rightarrow A6=?$, 5 R/S $\rightarrow B6=?$, 0 R/S $\rightarrow A5=?$ after just 5 minutes, you get: \rightarrow ROOT 1 \rightarrow U= 1.1936146 , R/S \rightarrow V=-0.8739372 , R/S \rightarrow \rightarrow ROOT 2 \rightarrow U= 1.1936146 , R/S \rightarrow V= 0.8739372 , R/S \rightarrow \rightarrow ROOT 3 \rightarrow U= 0.1940332 , R/S \rightarrow V=-0.6858876 , R/S \rightarrow \rightarrow ROOT 4 \rightarrow U= 0.1940332 , R/S \rightarrow V= 0.6858876 , R/S \rightarrow → ROOT 5 → U=-0.9876477 , R/S → V=-0.5325453 , R/S → → ROOT 6 → U=-0.9876477 , R/S → V= 0.5325453 , R/S → 0.0050000 Happy programming, folks !

VALENTIN ALBILLO (4747)

01 LBL''RP'' 02 FIX 0 03 CF 29 04 ''N?'' 05 PROMPT 06 STO 00 07 STO 03 08 9.008 09 + 10 STO 01 11 STO 05 12 RCL 00 13 ST+ X 14 10 15 + 16 STO 02 17 STO 06 18 LBL 05 19 ''A'' 20 ARCL 03 21 ''F=?'' 22 PROMPT 23 STO IND 05 24 ''B'' 25 ARCL 03 26 ''F=?'' 27 PROMPT	44 SIGN 45 STO 04 46 LBL 01 47 RCL 00 48 STO 08 49 SF 01 50 XEQ 11 51 R-P 52 $1/X$ 53 STO 07 54 X()Y 55 CHS 56 STO 08 57 CF 01 58 XEQ 11 59 RCL 08 60 RCL 07 61 P-R 62 XEQ 03 63 ST- 03 64 X()Y 65 ST- 04 66 RND 67 X \neq 0? 68 GTO 01 69 X()Y 70 END	87 RCL 01 88 INT 89 10 90 - 91 1 E3 92 / 93 ST- 05 94 LBL 10 95 ISG 00 96 LBL 14 97 "ROOT " 98 FIX 0 99 ARCL 00 100 AVIEW 101 PSE 102 "U=" 103 FIX 7 104 ARCL IND 05 105 PROMPT 106 "V=" 107 ARCL IND 06 108 PROMPT 109 DSE 06 110 DSE 05 111 GTO 10 112 RTN 113 LBL 11	130 DSE 08 131 GTO 02 132 RTN 133 LBL 00 134 RCL 04 135 RCL 03 136 XEQ 03 137 RCL IND 05 138 FS? 01 139 RCL 08 140 FS? 01 141 I 142 + 143 FS? 00 144 STO IND 05 145 X()Y 146 RCL IND 06 147 FS? 01 148 RCL 08 149 FS? 01 150 I 151 + 152 FS? 00 153 STO IND 06 154 X()Y 155 FS? 01 156 DSE 08
28 STO IND 06 29 DSE 03	71 X≠0? 72 GTO 01	114 RCL 01 115 STO 05	157 <u>LBL</u> 02 158 DSE 06
30 X()Y 31 DSE 06	73 SF 00 74 XEQ 11	116 RCL 02 117 STO 06	159 DSE 05 160 GTO OO
32 DSE 05 33 GTO 05	75 1 76 ST+ 05	118 FC? 01 119 GTO 13	161 RIN 162 LBL 03
34 RCL 03 35 LBL 06	77 ST+ 06 78 1 E-3	120 1 E -3 121 ST+ 0 5	163 STO L 164 R 7
36 CF 00 37 CHS	79 ST+ 01 80 RCL 03	122 LBL 13 123 BCL IND 06	165 ST Y
38 STO 04	81 STO IND 05	124 RCL IND 05	167 ST# Z
40 RND	83 STO IND 06	126 GTO 02	169 ST= Y
41 FIX 6 42 X≠0?	84 DSE 00 85 GTO 06	127 RCL 08 128 ST 7	170 ST = L 171 X() L
43 GTO 01	86 BEEP	129 1	172 R/ 173 -
registers:			174 RDN 175 +
00=n 01=add, an	$09=a_0 (u_n)$	real parts	176 R/
$02=add \cdot b_n n$	10-a1 (an-1)	of coeff. (& roots)	
$03=r \cdot p \cdot of z$ $04=i \cdot p \cdot of z$	$\frac{n+9=a_n}{n+10=b_0} (v_n)$	-	177 lines
$05=aux.(a_n)$	$n+11=b_1 (v_{n-1})$	imag. parts	SIZE 2n+11
07=auxiliar 2 08=auxiliar	h+10=b _n (b _n)	of coeff. (& roots)	

remarks ; typical running times: n=6 , 5 min (R) ; 8 min (C) n=10,14 min (R) ; 22 min (C)

RPN STACK OF	M LEVELS	(by Valentin Albill	lo) (4747)
RPN STACK OF 01 LBL"STKN" 02 "N=?" 03 PROMPT 04 11 05 + 06 1 07 / 08 13 09 + 10 STO 11 13.012 12 STO 13 XEQ"CLN" 14 "READY" 15 PROMPT 16 LBL'XY" 17 FS?C 18 CF 19 FS?C 20 GTO 21 X() 22 OFO 23 LBL 24 XEQ 25 X()Y 26 RTN 27 LBL"RD" 28 XEQ"XY" 29 DSE	Y LEVELS 41 RCL 12 42 + 43 X() 11 44 STO L 45 RIN 45 RIN 46 012 47 ST+ 12 47 ST+ 12 48 RIN 49 RTN 50 LBL 07 51 FS?C 04 52 CF 22 53 FC?C 22 53 FC?C 22 53 FC?C 22 54 GTO 06 55 X() Y 56 XEQ 06 57 X() Y 58 LBL 06 59 ISG 11 60 ISG 12 61 GTO 02 62 STO IND 63 RTN 64 LBL 02 65 13.012 66 STO 12 67 RIN 68 LASIX 69 X() 11	(by Valentin Albill 81 RTN 82 LBL 03 83 FS?C C4 84 CF 22 85 FS?C 22 86 RTN 87 ISG 11 88 GTO 10 89 RCL 11 90 FRC 91 13 92 + 93 STO 11 94 RDN 95 LBL 10 96 RCL IND 11 97 X() IND 12 98 RCL 11 99 FRC 100 RCL 12 101 INT 11 102 + 103 STO 11 104 RDN 105 X()Y 106 DSE 12 107 DSE 11 108 GTO 01 109 RTN	Lo) (4747) 121 RTN 122 LBL"/N" 123 XEQ 03 124 / 125 RTN 126 LBL"/N" 127 XEQ 03 128 Y/X 129 RTN 130 LBL"LX" 131 XEQ 07 132 LASTX 133 RTN 134 LBL"PI" 135 XEQ 07 136 PI 137 RTN 138 LBL"PI" 139 XEQ 01 140 CLST 141 CF 04 142 CF 22 143 LBL 05 144 ST0 IND 11 145 DSE 12 146 DSE 11 147 ISG 12 148 GT0 05 149 RTN
29 DSE 12	69 X() 11	109 RTN	149 BTN
30 DSE 11	70 FRC	110 LBL"+N"	150 LBL"RCIN"
31 GTO 01	71 13	111 XEQ 03	151 XEQ 07
32 RTN	72 +	112 +	152 "RCL "
33 LBL 01	73 X() 11	113 RIN	153 AVIEW
34 LASTX	74 STO L	114 <u>LBL"-N"</u>	154 LBL 04
35 X() 11	75 RIN	115 XEQ 03	155 PSE
36 FRC	76 STO IND	11 116 -	156 FC?C 22
37 STO 12	77 RTN	117 RTN	157 GTO 04
38 1 E3	78 <u>LBL "ET"</u>	118 LBL"=N"	158 RCL IND X
39 ≡	79 XEQ 07	119 XEQ 03	159 END
40 X() 12	80 SF 04	120 ≆	

this is, a stack with n registers (not just the 4 registers of the standard, built-in, 4-level stack). The value, n, is chosen by the user, and is limited only by available memory. Several functions are provided: ENTER,X()Y,RIN,CLST,+,-, \pm ,/, y^{\pm} ,LASTX, PI,and RCL. The rest of the functions are the built-in functions, for instance, STO is the built-in STO, SQRT, SIN,etc. The program is 159 lines, 343 bytes. It re-

quires SIZE n+12 for a n-level stack. All operations are very fast, even for large n, so the program may be used as easily as if it were the standard 4-level stack. All functions are supposed to be asigned to keys for its execution in USER mode: ET (ENTER) is assigned to 41 (ENTER), RD (RDN) to 22 (RDN) +N (+) to 61 (+), -N(-) to 51 (-), $\pi N(\pi)$ to 71 (π), /N (/) to 81 (/), PI to -82 (PI), CIN (CLST) to -21 (CL Σ), RCLN (RCL) to 34 (RCL), XY (X()Y) to 21 (X()Y),/N to -12(y^T) The stack behaves exactly like the original

one: it lifts and performs the same, register duplication, etc, but for a minor detail:RCL after ENTER does not overwrite the number in X, but the stack is lifted. This has been done intentionally, but can be changed to the overwrite mode easily.Ex cept for this sequence, all other functions performs as you - would expect, the upper register replicates each time the stack drops because of a two-number operation, etc.

RCLN, when executed, prompts for an argument with the standard RCL ____, and the program stays in a PSE loop, waiting for you to enter the argument for the desired register. This can be 0 thru 10 (both included) and n+12 upwards, where n is the number of levels of your stack. So, when using STO, remember that you have registers 00 thru 10 and n+12 upwards for your use. R11,R12 are used as scratch, and R13 thru R(n+11) are used to store part of the stack.

Instructions .- make all the neccessary assignments, set USER mode

-use the stack as normal: first, XEQ "SIKN" \rightarrow N=? -enter the desired number of levels: n R/S \rightarrow READY -from now on, think of the 41c as a n-level stack machine, and execute desired functions accordingly. Take into account that STO should be used only with addresses 00 thru 10 and n+12 up, and the same is true for RCL. The argument for RCL is entered during a pause. RCL after ENTER does not overwrite X, but lifts the stack first.

EXAMPLES : We want a 5-level RPN stack: set USER, FIX 2

XEQ "STKN" \rightarrow N=?, 5 R/S \rightarrow READY

1 ENTER 2 ENTER 3 ENTER 4 ENTER 5 RIN \Rightarrow 4.00, RIN \Rightarrow 3.00, RIN \Rightarrow 2.00, RIN \Rightarrow 1.00, RIN \Rightarrow 5.00 (the 5 levels have been - shown), $\Xi \Rightarrow$ 20.00, $+ \Rightarrow$ 23.00, X()Y \Rightarrow 2.00, X()Y \Rightarrow 23.00, RIN \Rightarrow 2.00, RDN \Rightarrow 1.00, RDN \Rightarrow 1.00, RDN \Rightarrow 1.00, RDN \Rightarrow 23.00,

(the upper register has replicated as the stack dropped), LASTX \Rightarrow 20.00, / \Rightarrow 1.15, STO 03 \Rightarrow 1.15, $\mp \Rightarrow$ 2.30, PI \Rightarrow 3.14,

 $+ \rightarrow 5.44$, RCL \rightarrow RCL _ _ , 3 $\rightarrow 1.15$, $y^{x} \rightarrow 7.02$, CL $\Sigma \rightarrow 0.00$

so, you see, it is as easy to use as if it were the normal stack. Now, let's compute an example taken from TI adds: Compute $1 + 2 \ge 2.5(3/7) = ?$

-if we want to key in the problem left-to-right, we need a 5-level stack (minimum):

XEQ"SIKN" \rightarrow N=?, 5 R/S \rightarrow READY

1 ENTER 2 ENTER 2.5 ENTER 3 ENTER 7, $/ \rightarrow 0.43$, $y^{x} \rightarrow 1.48$, $x \rightarrow 2.96$, $+ \rightarrow 3.96$, FIX 9 $\rightarrow 3.961936296$

so, the problem was keyed in left-to-right. This is a very good advantage of a n-level stack, you can hold up to n-1 pending operations. Using the standard 4-level stack, up to 3 operations may be left pending, and problems requiring more pending operations cannot be keyed left-to-right, and have to be rearranged.

But, using a, say, 15-level stack, you can hold as many as 14 pending operations, and thus, you can confidently key in any - problem left to right, without rearranging anything. That's the usefulness of the program. You can also use it when leaving so-meone your 41c, and that person is not very used to RPN: show him how to use ENTER, RIN, and X()Y, and let the 15 (say) level stack do the rest !

VALENTIN ALBILLO (4747)

EVEN WINS	(by Valentin A	lbillo , #4747	()
01 LBL'EVEN"	31 +	66 AVIEW	101 BEEP
02 FIX 0	32 STO 07	67 TONE 9	102 PSE
03 STO 00	33 <u>LBL 02</u>	68 PSE	103 RCL 01
O4 CLX	34 "THERE ARE	" 69 "IEAVE "	104 RCL 03
05 STO 01	35 ARCL 07	70 ARCL 07	105 XEQ 04
06 STO 03	36 AVIEW	71 AVIEW	106 1
07 9.02	37 PSE	72 PSE	107 X=Y?
08 CF 29	38 RCL 03	73 "YOU?"	108 GTO 13
09 4	39 STO 04	74 PROMPT	109 GIO 07
10 <u>LBL 00</u>	40 RCL 01	75 STO 08	110 <u>LBL</u> 10
11 STO IND Y	41 STO 02	76 RCL 07	111 "I WIN"
12 ISG Y	42 RCL 05	77 X=Y?	112 AVIEW
13 GTO 00	43 2	78 GTO 08	113 BEEP
14 <u>IBL 01</u>	44 MOD	79 RCL 08	114 PSE
15 CIX	45 CF 02	80 ST- 07	115 GTO 01
16 STO 05	46 X =0?	81 ST + 05	116 <u>LBL 13</u>
17 STO 06	47 SF 02	82 GTO 02	117 RCL 02
18 RCL 00	48 STO 03	83 <u>IBL 06</u>	118 RCL 04
19 R-D	49 RCL 07	84 "I TAKE "	119 XEQ 04
20 FRC	50 6	85 ARCL 07	120 1
21 STO 00	51 MOD	86 AVIEW	12 1 X=Y?
2 2 1 3	52 STO 01	87 TONE 9	122 GTO 01
23 🖬	53 RCL 03	88 PSE	123 <u>LBL 07</u>
24 9	54 XEQ 04	89 RCL 07	124 -
25 +	55 RCL 07	90 STO IND T	125 STO IND Y
26 2	56 X(=Y?	91 ST+ 06	126 GTO 01
27 /	57 GTO 06	92 <u>LBL 08</u>	127 <u>LBL 04</u>
28 INT	58 X()Y	93 RCL 06	128 6
29 ST+ X	59 STO 08	94 2	129 x
30 1	60 X(=0?	95 MOD	130 +
	61 GTO 09	96 X=0?	131 9
+++++++++++++++++++++++++++++++++++++++	62 ST- 07	97 GTO 10	132 +
134 lines I	63 ST+ 06	98 <u>IBL 09</u>	133 RCL IND X
STZE 021	64 "I TAKE "	99 "YOU WIN"	134 END
	65 ARCL 08	100 AVIEW	

Description .- At the beginning of the game, a random number of chips are placed on the board. On each turn, a

player must take 1,2,3 or 4 chips. The winner is the player who finishes with a total number of chips that is even. The game runs continually, as soon as one finishes, another starts, but you may quit at any moment by inputting 0 as your move.

What is really remarkable is that the computer starts out knowing only the rules of the game, but a learning me chanism allows it to learn from its mistakes, playing gradually better and better, until it is extremely difficult to beat. In fact, after 20 games in a row, it is almost unbeatable. Thus, this is a learning program: the better you play against it, the faster it learns to play well.

It could be interesting for those members desi ring to implement playing strategies which learn more and more as they play.

Warnings : your move is not tested for legality: you must take 1,2,3 or 4 chips. HP moves first. If, at any moment, flag 02 is set (see annunciator), your total is even. If flag 02 is clear, your current total is odd.

Instructions .- to begin a session: key in a seed (betw. 0 & 1) seed, XEQ"EVEN" \rightarrow THERE ARE nn \rightarrow I TAKE m \rightarrow LEAVE nn \rightarrow YOU? enter your move (take 1,2,3 or 4): $n R/S \rightarrow$ \rightarrow THERE ARE nn \rightarrow I TAKE m \rightarrow LEAVE nn \rightarrow YOU? continue the game. When the last chip is taken off the board, either YOU WIN or I WIN appears (the winner is the one with a total number of chips that is even) and another game starts.